
SciGRID

Open Source Transmission Network
Model

USER GUIDE
V 0.2

AUTHORS:
W. MEDJROUBI & C. MATKE

NEXT ENERGY

EWE-Forschungszentrum

für Energietechnologie e. V.

www.scigrid.de

Last Update: 20.11.2015

Contents

1 Licence 4

2 Introduction 4

2.1 Motivation and aim . 4

2.2 SciGRID project details . 5

2.3 Technical approach . 5

2.4 Data sources: OpenStreetMap . 6

3 How to use SciGRID 7

3.1 Requirements . 7

3.2 Getting started . 8

3.3 OSM data download and filtering . 9

3.4 Power data export to the database . 13

3.5 Abstraction . 16

3.5.1 Relations with 2 substations . 19

3.5.2 Relations with 3 substations and a T-junction 23

3.6 Visualization . 27

3.7 Running SciGRID with the makefile . 30

3.8 Update of the SciGRID dataset . 32

4 SciGRID GUI 32

4.1 Input/Output section . 33

4.2 Menu and status bar section . 36

4.3 Information section . 36

4.4 Tasks section . 37

5 Acknowledgements 41

6 Troubleshooting 41

7 How to? 42

7.1 How to install osmosis? . 42

7.1.1 On Linux . 42

7.1.2 On Mac OS . 42

7.2 How to install PostgreSQL? . 42

7.2.1 On Linux . 42

7.2.2 On Mac OS . 42

7.3 How to install osm2pgsql? . 43

7.4 How to obtain gpx files? . 43

1 Licence
This document is part of SciGRID release V0.2.

SciGRID is free, open-source code and open data and builds on OpenStreetMap data. The
OpenStreetMap data is available under the Open Database License (ODbL) [1] and Open-
StreetMap cartography is licenced as CC BY-SA. For more information on the copyright of
OpenStreetMap, please refer to [2]. All data and databases delivered with the SciGRID model
are made available under the Open Database License [3]. Any rights in individual contents of
the database are licenced under the Database Contents License [4] (see [5]). You can also redis-
tribute and/or modify the data distributed with SciGRID under the same licences and copyright.

The SciGRID code and this documentation is licenced under the Apache License, Version 2.0.
[6]. Please visit the webpage [6] for more information concerning the Apache License and for
a description of the terms under which you can use the SciGRID code.

Limitations of liability: in no event and under no legal theory, whether in tort (including negli-
gence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any contributor to SciGRID be liable to any user
for damages, including any direct, indirect, special, incidental, or consequential damages of
any character arising as a result of this License or out of the use or inability to use the work
(including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such contributor has
been advised of the possibility of such damages.

2 Introduction

2.1 Motivation and aim

Details of electrical transmission networks are currently integrated in a number of in-house
energy system models which are not publicly available. The structure, assumptions, simplifi-
cations, and the degree of abstraction involved in the transmission network models used are,
hence, unknown and often undocumented. Further, there is hardly any (scientific) discussion
on the underlying approaches, procedures, and results. This implies, that the learning curve in
the construction of (electrical) grid models is rather low. At the same time, the output of en-
ergy system models takes an important role in the decision-making process concerning future
sustainable technologies and energy strategies. Recent examples of such strategies are debated
and discussed for the Energiewende in Germany.

In this context, the availability of transmission network data and models is a critical and urgent
issue which has to be addressed in order to allow the involvement of an increasing number
of actors in the energy sector decision-making. Furthermore, transmission network models are
important when dealing with issues concerning cross-border congestion management, transmis-
sion capacity, grid stability and extension, to cite a few examples.

In this framework, the project SciGRID initiated by the research center NEXT ENERGY [7]
aims at building an open source model of the electrical transmission network in Europe. The
idea behind making both the SciGRID model and data available in the open source domain is
that the energy modeling sector lacks reliable data on transmission networks. Data available
under appropriate (open) licences ensures that established models and the assumptions they
incorporate can be published, discussed, and validated in a well-defined and self-consistent

4

manner. In addition, the methods which are developed for building the model will be published
under suitable licences, which is expected to foster and improve existing in-house models.

The main purpose of the SciGRID project is to open the door to new models and ideas in energy
system modelling by providing freely available and well-documented data on the European
electrical transmission networks. The open source philosophy offers a high level of transparency
as the involved assumptions and simplifications are open to discussion and criticism. Such a
discussion and the availability of documented approaches and methods can act as a motivation
for more communication and scientific scrutiny in the construction of grid and network models.
Furthermore, the SciGRID model will also be a benefit for existing in-house models, as its tools
and results can be used as both reference implementation and reference data.

2.2 SciGRID project details

Project title: Open Source Reference Model of European Transmission Networks
for Scientific Analysis (Offenes Referenzmodell europäischer Übertra-
gungsnetze für wissenschaftliche Untersuchungen)

Acronym: SciGRID (Scientific GRID)

Funding period: September 2014 - August 2017

Sponsoring body: Federal Ministry of Education and Research (Bundesministerium für
Bildung und Forschung), Germany

Funding code: 03SF0471

Project partner(s): NEXT ENERGY (individual project)

Project webpage: www.scigrid.de

2.3 Technical approach

On the technical level, the SciGRID network model is mainly based on the raw transmission
data available in openstreetmap.org [8] under the ODbL License [1]. The ODbL License offers
the possibility to share derived and modified databases from the OSM database. The SciGRID
project is not only the SciGRID abstraction code but also the datasets of the transmission net-
work resulting from the abstraction. Both are made available and can be downloaded from the
SciGRID project webpage [9]. Bellow are the details of the approach used in SciGRID.

Four steps are involved in the SciGRID model: OSM data download, power data filtering, data
export to a database, and data abstraction (see Fig. 1). As a result, the vertices (nodes) and links
(edges) of the transmission network are created and exported as .csvdata files. The relational
database approach allows for a flexible and a modular structure of the SciGRID model. For
example, only networks with transmission lines of a certain voltage level, managed by a certain
network operator, or for a certain type of cables can be filtered and graphically displayed.

This is the documentation for version 0.2 of the SciGRID transmission network model. This
document includes a detailed user guide of the SciGRID model as well as the assumptions
and simplifications considered in building the model. Additionally, a detailed user guide of the
SciGRID Graphical User Interface is included.

5

Figure 1: Schematic representation of the different stages involved in the SciGRID model.

The SciGRID model, user guide and data can be downloaded from the SciGRID webpage
under the download section [9].

2.4 Data sources: OpenStreetMap

The SciGRID model is based on data available from the collaborative project OpenStreetMap
(OSM). The data from OSM is licenced under ODbL, which states that also derived data can be
published. This offers the possibility to share the SciGRID model along with its output data.

OSM is a collaborative project to create a free editable map of the world. OSM data is available
on the webpage of OpenStreetMap [8] and is rendered directly as a map. The data can also be
downloaded in an XML format, which follows a certain schema definition.

OSM data is based on three data types, called "data primitives", which are nodes (defining
points in space), ways (defining an ordered collection of nodes that form linear paths and area
boundaries) and relations (defining an ordered collection of nodes, ways, or other relations and
provide logical or geographical relationships between OSM "data primitives"). The geograph-
ical locations of the nodes are defined by their latitude and longitude (see Fig.2). Datasets
relevant for the power grid are filtered by using the "power" tag, which in OSM identifies a
wide range of facilities and features related to the generation, the transmission and the distri-
bution of the electrical power. The relations having the key/value with route/power are filtered
out, their members (ways and nodes) identified and their geographical locations extracted (see
Fig.2). The filtering is performed in an automated manner and the different steps it involves
will be explained in this user guide. A map of OSM data showing in particular power-related
details can be found on itoworld [10].

OSM data also offers the possibility to isolate the different components of the transmission
network by using sub-tags associated with these components. Some practical examples are
the tags: "substation" indicating electrical substations and "line" indicating transmission lines.
Other sub-tags provide technical details about the components of the transmission network: the
tag "voltage" indicates the voltage level(s) of a transmission line or a substation, the tag "cables"
indicates the number of power-carrying cables represented by a transmission line, and the tag
"tower" represents the towers carrying the electricity cables (see Fig.3).

To build the SciGRID model using OSM data, the transmission network components need to

6

Figure 2: Schematic representation of the OSM data types. Relations with the "power" tag are chosen
and also the subsequent ways and nodes belonging to the relations. The identification of relations and
their members is done by using their "ID" tag.

Figure 3: Example of the keys, values and tags available for a power relation in OSM. The relation
displayed has the OSM-ID=1637161 [8], credits: ©OpenStreetMap contributors.

be accurately and correctly defined, isolated, and reproduced in a consistent and automatized
fashion.

3 How to use SciGRID

3.1 Requirements

The SciGRID model scripts are developed and tested on Linux, but should also work with other
UNIX systems. The different tools and software used in building the SciGRID model and their
versions are listed below.

Operating system: Ubuntu precise (12.04.5 LTS)

7

osmosis version: 0.44

PostgreSQL version: 9.1.15 (64-bit)

PostGIS version: 1.5.3

osm2pgsql version: 0.82

pgAdmin III version: 1.14.0

GNU Make version: 3.81

GNU bash: 4.2.25(1)-release

Python: 2.7.3

QGIS version: 2.7.0-Master

For more information on how to install some of the software listed above, we refer to Section
7, and consult the file REQUIREMENTS available with the release folder.

3.2 Getting started

The SciGRID network model in its current version is based solely on raw OSM data. The
structure of the SciGRID folder which can be downloaded from [9], is shown on Fig. 4. The
SciGRID folder includes: the SciGRID abstraction code, the SciGRID GUI, the network data
(vertices and links), OSM power data for Germany and this user guide.

Figure 4: The folder structure of the SciGRID model folder, which can be downloaded from [9].

In the following the different steps involved in the SciGRID model are introduced in details.

8

3.3 OSM data download and filtering

The latest file containing the OSM data of the entire world, called "planet-latest.osm" can be
downloaded for example from the website [11]. The term "latest" indicates that it is the latest
available data of the whole planet. Older versions of the planet data are provided with a "date
stamp" and are named as: planet-{date stamp}.osm. Other sources are available for download-
ing OSM data, for more information refer to [12]. The OSM data can be extracted using the
java tool osmosis as smaller datasets , e.g. for a continent, a region, country or a city, depending
on the user needs.

The OSM data is available under different formats, we have chosen to work with the .pbf

(Protocolbuffer Binary Format) format [13]. The .pbf file representing the OSM planet data
contains all information available in the OSM world map. This represents a huge number of
nodes, ways and relations (On 27.10.2015 OSM planet data included 3 Billion nodes [13]).

The raw OSM data is filtered thematically using the "power" tag and spatially by only including
the region for which the transmission network will be abstracted. As an example, in this user
guide the region of interest will be Germany. However, the procedures introduced here can
be adapted and applied for any other region, as long as the relation representation of the the
transmission network is available. The osmosis tool used to filter the data with respect to the
"power" tag will also be introduced.

OSM data download

The planet OSM data file is downloaded as .pbf file to the folder SciGRID/data/01_osm_-
raw_data. The size of the .pbf file is about 30 Gb (Status: November 2015). Depending
on the internet connection speed, the user will need about two hours to download the whole
planet OSM .pbf file. It is not necessary that the user downloads the planet OSM data file.
In the SciGRID model folder, the resulting data extracted and filtered using osmosis is pro-
vided in the folder SciGRID/data/02_osm_raw_power_data under the name de_power_-

151109.osm.pbf (representing the filtered data status on 09.11.2015).

OSM data filtering: the "power" data

The tag "power" is assumed to represent all data necessary to build the SciGRID network
model. Power data is represented by relations, ways and nodes having the "power" tag (either
as a key or as a value). More precisely, it is assumed that the relations having a tag with the
key "route" and value "power" cover all the available information about transmission circuits
in OSM. For more information about the tags with the key "power" and how the transmission
network is represented in OSM, please refer to the reference [13]. 1

The OSM data with the "power" tag for the region "Germany", defined by a bounding polygon,
is extracted using the command line java application osmosis. osmosis is a useful open source
application which allows for OSM data manipulation and processing. For more information
about osmosis and how to install it, refer to the web-page [14] or Section 7.1 of this user guide.

1Note that not all the transmission network details are covered by relations. This is the case for example for
most of the European countries, where the relation representation of the transmission network is poor. In Germany
however, the relation representation is widely used and covers a high percentage of the transmission network.

9

osmosis version 0.44 is used for the present version of the SciGRID model.

When filtering the planet-latest.osm.pbf file, osmosis stores a large amount of temporary
data. In order to provide sufficient space, a temporary folder is set with the following command:

Listing 1: set osmosis tmp folder� �
1 export JAVACMD_OPTIONS="-Djava.io.tmpdir=osmosis_tmp_folder"� �

where osmosis_tmp_folder indicates the folder’s path. If no folder is indicated, osmosis will
store the data by default in /tmp.

The OSM data is filtered for Germany and for the data primitives containing a tag "power".
The filtering is performed for the power tag (key=power, value=*) for nodes, ways and rela-
tions. In addition, the data is filtered by adding the power relations containing a tag (key=route,
value=power).

This is accomplished by the following osmosis command:

Listing 2: Osmosis power data filtering� �
1

2 osmosis \

3 --read-pbf file=SciGRID/data/01_osm_raw_data/planet-151109.osm.pbf \

4 --tag-filter accept-relations route=power \

5 --used-way --used-node \

6 --bounding-polygon file=SciGRID/data/01_osm_raw_data/germany.poly \

7 completeRelations=yes --buffer outPipe.0=route \

8 --read-pbf file=SciGRID/data/01_osm_raw_data/planet-151109.osm.pbf \

9 --tag-filter accept-relations power=* \

10 --used-way --used-node \

11 --bounding-polygon file=SciGRID/data/01_osm_raw_data/germany.poly

12 completeRelations=yes --buffer outPipe.0=power \

13 --read-pbf file=SciGRID/data/01_osm_raw_data/planet-151109.osm.pbf \

14 --tag-filter reject-relations \

15 --tag-filter accept-ways power=* \

16 --used-node \

17 --bounding-polygon file=SciGRID/data/01_osm_raw_data/germany.poly \

18 completeWays=yes --buffer outPipe.0=pways \

19 --read-pbf file=SciGRID/data/01_osm_raw_data/planet-151109.osm.pbf \

20 --tag-filter reject-relations \

21 --tag-filter reject-ways \

22 --tag-filter accept-nodes power=* \

23 --bounding-polygon file=SciGRID/data/01_osm_raw_data/germany.poly \

24 --buffer outPipe.0=pnodes \

25 --merge inPipe.0=route inPipe.1=power \

26 --buffer outPipe.0=mone \

27 --merge inPipe.0=pways inPipe.1=pnodes \

28 --buffer outPipe.0=mtwo \

29 --merge inPipe.0=mone inPipe.1=mtwo \

30 --write-pbf file=SciGRID/data/02_osm_raw_power_data/de_power_151109.osm.pbf� �
10

Note that the symbol \ at the end of each command line is a line-breaking symbol and is not part
of the osmosis command. Note also that the "151109" used in the name of the database and the
files throughout this user guide indicates the "date" stamp of the OSM data used. In this case
the data used correspond to the 9th of November 2015.

The option "outPipe.0=name" produces a data stream and stores it temporarily under "name".
This option is used four times in Listing 2 to temporarily contain the data resulting from the
"power" filtering applied on relations, ways and nodes. As an example, the following command
produces a data stream containing the relations having a "power" tag and temporarily stores it
under the name "route":

Listing 3: data stream output� �
1 --read-pbf file=SciGRID/data/01_osm_raw_data/planet-151109.osm.pbf \

2 --tag-filter accept-relations route=power \

3 --buffer outPipe.0=route \� �
The same procedure is used for the nodes, ways and power relations data. To allow the pipeline
processing to be run in parallel (on multiple threads) the option --buffer is used.

The different data streams produced when using the outPipe option are then merged together
using the option --merge . As an example, the data resulting from filtering the power tagged
relations (both power=* and route=power data) are merged as follows:

Listing 4: osmosis pipe merge� �
1 --merge inPipe.0=route inPipe.1=power --buffer outPipe.0=mone� �

The same procedure is repeated to merge all data streams and finally store the filtered power
data in the file de_power_151109.osm.pbf

A detailed description of the osmosis commands used in Listings 2:

• SciGRID/data/01_osm_raw_data and SciGRID/data/02_osm_raw_power_data are
the folders where the raw OSM planet data and the output of the OSM data filtering are
stored, respectively.

• --read-pbf enables reading OSM data files in .pbf format. If the file format is .osm the
option should be changed to --read-xml . However, it is recommended to use .pbf files.
It is also possible to use the file formats .osm.gz or .osm.bz2. This is done by unpacking
the file using a pipeline: bzcat planet-latest.osm.bz2 | osmosis file=-

• --tag-filter option is used to filter elements (relations, ways and nodes) based on their
type and optionally based on their tag values. It is useful to accept or reject elements that
match the filter specification.

• The combination --tag-filter accept-relations route=power is used to include the rela-
tions with the key "route" and the value "power".

11

• To allow the filtering of ways having the key "power", the combination
--tag-filter accept-ways power=* is used, where * means that any value is accepted. The

same syntax is used for nodes and relations, using accept-nodes and accept-relations key-
words, as in Listing 2.

• To export nodes which belong only to the filtered ways and relations, the option --used-node
is used. This option guarantees that other nodes which do not belong to the filtered rela-
tions and ways will not be included. This reduces dramatically the number of exported
nodes.

• --buffer allows the pipeline processing to be split across multiple threads. This is useful
if multiple CPUs are available, as multiple tasks consume significant CPU time.

• --outPipe.0=name produces a data stream and stores it in the temporary file "name". For
example, --outPipe.0=route stores the data stream under "route". Using pipes allows for
merging multiple tag filters in one osmosis command. This is done by directing the data
stream resulting from each tag filtering and then merging all streams two by two using
the option --merge .

• The data is spatially restricted by using a .poly file for Germany. This is accomplished
with the option --bounding-polygon . The .poly files consist of a list with arbitrary
many points, which builds the exterior of a region of interest. The .poly file for Germany
(germany.poly) is available in the SciGRID/data/01_osm_raw_data folder.

• Using --completeRelations=yes in combination with the previous bounding polygon op-
tion allows for including all available relations which are members of relations which
have at least one member in the bounding box. This option also implies that the ways
are also completed. This is important in the case where in a relation some relation mem-
bers (transmission lines, substations) are in Germany but some members are outside of
Germany. This is the case for example for cross-border transmission lines (see Figure 5),
which extend between two countries. The option --completeRelations=yes guaranties
that all relation members are exported even if some of them are "physically" outside of
the bounding box.

• The option --write-pbf allows to write the results of the filtering into the indicated .pbf

file.

After executing the osmosis command in "Listing 2, the resulting data file containing the filtered
"power" OSM data is labelled de_power_151109.osm.pbf and is stored in the SciGRID/data/02_-
osm_raw_power_data folder. A copy of this file is provided with the SciGRID model folder.
The dataset includes only relations, ways, and nodes having the key "power" for the region
Germany. This data will be labelled "power data" throughout this user guide.

For more information about other options available in osmosis, please refer to the OSM wiki
webpage [13] or type the command osmosis --help in a shell terminal.

Using bounding box for OSM data filtering

When filtering for a certain region, the user can make use of a bounding box, which is less pre-
cise than a .poly file in defining borders. This is done by using the osmosis option --bounding-box

12

Figure 5: Example of a relation representing a cross-border transmission line. One transmission substa-
tion and the transmission lines of the relation are in Germany (right side of the figure) and the second
transmission substation is in Luxembourg (left side of the figure). Credits: ©OpenStreetMap contribu-
tors.

instead of --bounding-polygon . The user needs to indicate the latitudes of the top, bottom
bounding box, and the longitudes of the left and right edges of the bounding box; respectively.
For Germany for example, the osmosis command using a bounding box will be:
--bounding-box top=56 bottom=46 left=5 right=16 .

3.4 Power data export to the database

To store and analyse the "power data", it needs to be exported to a database. This is accom-
plished by using the command-line based program osm2pgsql [13], which converts OSM data
to PostGIS-enabled PostgreSQL databases. The open source PostgreSQL [15] is an object-
relational database management system. PostGIS [16] is a spatial database extender for Post-
greSQL object-relational databases. PostGIS is very useful in the context of OSM data as it
enables support for geographic objects allowing location queries to be run in PostgreSQL.

What is osm2pgsql actually doing? First, it is provided with a so called .style file, where
all the settings of how osm2pgsql deals with the OSM raw data are stored. These settings
indicate which columns are created for the tables containing the "power data" in the PostgreSQL
database. It is also possible to define which information in the "power data" are ignored and will
not be stored in the database. In the context of SciGRID, it is important to use a customized
.style file, and not the default one available in the osm2pgsql folder because the latter does not
consider the "power" related tags. A customised .style file called power.style is provided
with the SciGRID model in the folder SciGRID/data/02_osm_raw_power_data.

In the following, the different steps involved in exporting the "power data" to the PostGIS en-
abled PostgreSQL database are described in details. Note that, the following steps are also
included in the SciGRID makefile provided in the folder SciGRID/code.

13

• Step1: Create a PostgreSQL database:� �
1 createdb --username=postgres_user --port=postgres_port \

2 --host=postgres_host postgres_database� �
The name of the database is indicated as postgres_database . The options --username ,
--host , --port indicates the username, the server host, and the port number of the Post-

greSQL server; respectively. The default values for the username, hostname and the port
number are: postgres, 127.0.0.1 and 5432; respectively.

• Step2: Load the PostGIS object and function definitions into the database by loading the
postgis.sql definitions file:� �

1 psql --dbname=postgres_database \

2 --username=postgres_user --host=postgres_host \

3 -f /usr/share/postgresql/9.1/contrib/postgis-1.5/postgis.sql� �
The option -f ../../postgis.sql indicates that a file containing SQL commands will be ex-
ecuted, in this case the file postgis.sql. Change the location of postgis.sql file, if
it is different in your system, in the default_config.mk file provided in the SciGRID
code folder. The postgis.sql file is located in Linux systems by default in the folder
[prefix]/share/contrib). To find where the file postgis.sql is located in your system, run
the following command in a terminal:� �

1 find . -name 'postgis.sql'� �
• Step3: Install the spatial reference system for PostGIS, necessary for a complete set of

EPSG coordinate system definition identifiers. The spatial_ref_sys.sql definitions
file has to be loaded and will populate the spatial_ref_sys table. This is done with the
command:� �

1 psql --dbname=postgres_database \

2 --username=postgres_user --host=postgres_host \

3 -f /usr/share/postgresql/9.1/contrib/postgis-1.5/spatial_ref_sys.sql� �
This will permit the use of very useful PostGIS functions, for example the ST_Transform()
operations on geometries. For more information about the psql command line and the
available options, consult the psql section in the PostgreSQL documentation [15].

Change the location of spatial_ref_sys.sql file, if it is different in you system, in the
default_config.mk file. To find where the file spatial_ref_sys.sql is located on
your system, run the following command in a terminal:� �

1 find . -name 'spatial_ref_sys.sql'� �
14

• Step4: Create the "hstore" extension for the database. The "hstore" data type permits
storing sets of key/value pairs within a single PostgreSQL value. This is useful in various
cases, such as rows with many attributes that are rarely examined, or semi-structured data.
Keys and values are simply text strings. This is accomplished by the command:� �

1 psql --dbname=postgres_database --username=postgres_user \

2 --host=postgres_host --port=postgres_port -c "CREATE EXTENSION hstore;"� �
The option -c SQL_command specifies that psql is to execute one command string,
SQL_command, and then exit.

• Step5: Export the data in ’.2adflstv]-[de_power_151109.osm.pbf to the database de_-

power_151109 using osm2pgsql. This is accomplished by using the following command:

Listing 5: Osm2pgSQL data export to database� �
1 osm2pgsql -r pbf \

2 --username=postgres_user --host=postgres_host \

3 --port=postgres_port --database=postgres_database \

4 --style /data/02_osm_raw_power_data/power.style -s -C cash_size_in_MB \

5 --number-processes nb-processors \

6 /data/02_osm_raw_power_data/de_power_151109.osm.pbf� �
note that the symbol \ at the end each command line is a line-breaking symbol and is not
part of the osm2pgsql command. The different options used in Listing 5 are explained in
the following:

– The first option -r pbf indicates the input-reader format, in this case the OSM
binary format .pbf is used. The path and the name of the power data file to be
exported is indicated on the last line of the command as:
SciGRID/data/02_osm_raw_power_data/de_power_151109.osm.pbf. This file
is provided in the folder SciGRID/data/02_osm_raw_power_data.

– The database to which the data is exported is defined using
--database=postgres_database , which in this case is de_power_151109, where

"de" stands for Germany (or Deutschland).

– The option --style /data/02_osm_raw_power_data/power.style indicates
the location and name of the style file. If not set by the user, the default .style file
location is /usr/local/share/osm2pgsql/default.style. As indicated above,
to be able to correctly include the power data in the database a customised style file
need to be used. In SciGRID an appropriate .style file named power.style is
provided in the folder SciGRID/data/02_osm_raw_power_data.

– To reduce the RAM usage it is useful to use the "slim mode" indicated by -s in the
export command. The data is then stored temporary in the database, although the
data export is slower.
An important advantage of using the slim mode option is that the relations will be

15

exported to the database as well, which is not the case when using the default export
mode. As the relations constitute the backbone of SciGRID model it is mandatory
to use the slim mode option when exporting the "power data" to the database.

– When using the slim mode, the option -C cache_size_in_MB is mandatory. The
default cache size is 800 MB of RAM.

– The user can specify the number of processors to run the data export in parallel by
making use of the option --number-processes nb_processors .

After executing the command in Listing 5 , the "power data" for Germany is exported into
the PostgreSQL database de_power_151109, created in Step 2. The de_power_151109 is ex-
tended with PostGIS and hstore extensions.

3.5 Abstraction

After downloading, filtering and exporting the OSM "power data" for Germany into the database
de_power_151109, the input data necessary for the SciGRID network model is available.

The SciGRID network model is based on the "power" relations, i.e. relations with a key/value
pair route/power. Relations with the key "route" and value "power" are typically constituted of
one or more substations and one or more transmission lines. The relations considered in this
second version of the SciGRID model are:

• Relation with only two substations and one/several transmission lines linking them, an
example of such relations is shown on Fig. 6. Substations are defined in OSM by the
key "power" and the values "substation", "sub_station", "station", "plant", "generator".
Transmission lines are on the other side defined by the key "power" and the values "line"
and "cable".

16

Figure 6: Example of a relation constituted of two substations. The two red circles are the two substations
contained in the relation (OSM-ID=1637161) and the black line are the transmission lines (this relation
contains four transmission lines). Figure obtained using overpass-turbo.eu, credits: ©OpenStreetMap
contributors.

• Relations with three substations and with a T-junction. T-junctions are connections where
transmission lines branch, an example of a relation with 3 substations and a T-junction is
shown in Fig. 7. The nodes at which the lines branch are called T-nodes, an example is
shown on Fig. 8.

These simplifications are used in this version of SciGRID as it is quite straightforward to extract
the network model when only considering such relations. Relations which have more than three
substations are not considered in a first approximation due to the difficulty of calculating the
transmission lines length. This is due to the fact that the relation members (nodes and ways)
may not belong to each possible connection between two substations. This makes it difficult
to define which transmission lines are connected to which substation, so that the length of the
transmission lines is not possible to calculate without the use of an elaborated algorithm or
a routing routine. Relations with zero or one substation are also not considered in SciGRID
as they constitute incomplete electrical circuits. In SciGRID only circuits with "at least" two
substations and one or more transmission lines are considered.

The abstraction involves extracting the vertices (nodes) and links (edges) of the transmission
network without considering the path followed by the transmission lines. The vertices of the
network are represented by the geographical center positions of the substations which are mem-
bers of the "power" relations. This procedure guarantees that possibly multiple relations with
a shared substation will be abstracted with the same vertex, since the geometric polygon of the
substation will be abstracted to its geometric center. The links (or edges) of the network are
represented by the transmission lines as straight lines, without including the information about
their paths. Therefore, the network produced by the SciGRID model is said to be an abstracted
transmission network, as it does not reproduce the transmission lines actual paths. It is how-
ever straightforward to conserve the information about the topology of the transmission lines if
needed.

17

Figure 7: Example of a relation (OSM-ID=339244) containing three substations (circles), a T-junction
and seven transmission lines. Figure obtained using overpass-turbo.eu, credits: ©OpenStreetMap con-
tributors..

Figure 8: T-connection from relation (OSM-ID=339244). The T-node represented by the blue filled
circle, is the node at which the transmission line at the top part of the figure branch into two parts.
Figure obtained using overpass-turbo.eu, credits: ©OpenStreetMap contributors.

18

The abstraction step in SciGRID will produce the vertices and the links of the abstracted trans-
mission grid, which can be stored as .csvdata files. The abstraction is divided in several
sub-steps and is executed by running the python script SciGRID.py.

In the following is a listing of the different steps involved in the abstraction process: first for
relations with two substations (Section 3.5.1) then for relations with 3 substations and a T-
junction (Section 3.5.2).

3.5.1 Relations with 2 substations

The abstraction is performed using a python script called SciGRID.py located in the SciGRID/code
folder. In the following, the different steps involved in the abstraction are introduced.

Abstraction step 1: "power" relations analysis

To be able to abstract relations with two substations, an analysis of the available "power" rela-
tions is performed on the data in the database de_power_151109. The analysis will concern
the number of the substations (and also transmission lines) contained in each "power" relation.
Note that, only relations where the voltage tag has a value of 220kV and higher are considered,
as in SciGRID only the extra-high voltage transmission system is modelled.

The analysis of the relations is performed by the function relation_analysis.py called by
the SciGRID.py script. Several SQL functions are defined in relation_analysis.py to list all
relations in the database de_power_151109 and to check for different attributes. The relations
have a tag "parts", where all parts of a relation (including relations, ways, and nodes) are listed
with their respective IDs. The relations "parts" or elements usually consists of transmission
lines and substations. The relation "parts" can also have extra tags other than the "power" tag.
If a part of a relation has the tags "power=construction", "power=planned" or "power=fixme" or
has no power tag, it is listed as a "discarded" part and the relation is excluded from SciGRID.

The number of substations and transmission lines involved in each relation is listed and stored in
the table _analysis_rels. The functions defined in relation_analysis.py use the relation
ID as a variable (input) value and each function call analyses the relation in terms of:

• the relation electrical properties (voltage, cables, wires, frequency)

• the (relation,way,node) IDs of substation parts

• the (relation,way,node) IDs of transmission line parts

• the (relation,way,node) IDs of discarded parts

• number of substation parts

• number of transmission line parts

• number of discarded parts

• the total number of parts

• an analysis for T-junctions IDs

19

A summary of the relations analysis for Germany is shown in Table 1 and 2.

relations to be fixed / being planned / being under construction 52
relations with 0 substation 4
relations with 1 substation 23
relations with 2 substations 643
relations with 3 substations 67
relations with 4 substations 3
total number of "power" relations in Germany 792

Table 1: Number of relations with key/value pair route/power in the dataset of Germany in OSM (Status:
18.05.2015). The total number of relations is subdivided into sets of relations with different numbers of
substations or categorized as discarded.

relations to be fixed / being planned / being under construction 54
relations with 0 substation 2
relations with 1 substation 11
relations with 2 substations 690
relations with 3 substations 65
relations with 4 substations 4
total number of "power" relations in Germany 826

Table 2: Number of relations with key/value pair route/power in the dataset of Germany in OSM (Status:
09.11.2015). The total number of relations is subdivided into sets of relations with different numbers of
substations or categorized as discarded.

Abstraction step 2: creating the vertices table

As stated earlier in this section, relations containing only 2 substations can be trivially con-
nected. Using these relations, the polygons of the substations are abstracted to their geometric
center. The centres of all substations will then build the vertices table of the SciGRID network
model. As an example, see Fig.9, where the substations of relation OSM-ID:3756858 are ab-
stracted to their geometric centres (in orange). The abstracted centres represent the transmission
model vertices.

After analysing the relations as explained previously, three tables are needed to obtain the list
of vertices derived from relations with exactly 2 substations. They are created using the three
SQL commands in Listings 6-8, which are part of the script create_db_tables.py.

20

Figure 9: Abstraction of the substations in the relation OSM-ID:3756858. The centres of the substations
in orange represent the network vertices, and the lines in black are the original transmission lines. Figure
obtained using overpass-turbo.eu, credits: ©OpenStreetMap contributors.

Listing 6: Intermediate vertices table� �
1 CREATE TABLE _vertices (

2 id serial PRIMARY KEY NOT NULL,

3 osm_id bigint,

4 osm_id_typ char,

5 geo_center geometry,

6 longitude float,

7 latitude float,

8 role text,

9 voltage text,

10 from_relation bigint);� �
The script create_db_tables.py, called by the SciGRID.py script creates all tables needed
for the abstraction process. The table _vertices in Listing 6 is an intermediate list of vertices,
which also contains the relation’s ID, given by the table _analysis_rels from Step 3.5.1.
Since different relations can share the same substation (vertex), the table _vertices can contain
repeated vertices. Therefore an intermediate step is necessary to "clean" these repeated vertices
so that the table vertices contains non-repeated "unique" vertices. A list of unique vertices is
obtained by adding vertices only once to the table vertices (see Listing 8). These vertices get
a new ID v_id, which identifies them within the SciGRID model. This new v_id is necessary,
since vertices can be derived from different data types in OSM which may share the same osm_-
id. The OSM IDs are only unique within a data type, namely nodes, ways, or relations. This
were the table vertices_ref_id (see Listing 7) comes into play. This table links the original
OSM ID osm_id and the unique SciGRID v_id. This table plays also an important role in the
update process of the SciGRID dataset, see Section 3.8.

21

Listing 7: Intermediate table of abstracted substations IDs� �
1 CREATE TABLE vertices_ref_id (

2 v_id serial PRIMARY KEY NOT NULL,

3 osm_id bigint,

4 osm_id_typ char,

5 visible smallint);� �
Listing 8: Table of abstracted substations� �

1 CREATE TABLE vertices (

2 v_id bigint PRIMARY KEY,

3 lon float,

4 lat float,

5 typ text,

6 voltage text,

7 frequency text,

8 name text,

9 operator text,

10 ref text,

11 WKT_SRID_4326 text);� �
In table vertices, additional data about the voltage level, frequency, name, operator, and ref-
erence (ref) of the substation are also included.

Abstraction step 3: creating the links table

Similarly to obtaining a table of vertices, two tables are needed to obtain the links table. These
tables are created using the following two SQL commands listed in Listings 9-10. These two
commands are part of the script create_db_tables.py.

The relation IDs are given by the table _analysis_rels from Step 3.5.1. For each relation,
a function which abstracts the connections between two substations to a link is applied. The
link is defined as a straight line connecting two abstracted substations (see Fig.10). This step
is accomplished by the function abstract_rel_with_2subs included in the python script
relation_abstraction.py.

The properties of each link, including its true length, the number of wires, cables, frequency,
name, ref, and operator are added to the table links. The table _links is an intermediate table,
since the begin and end of a link need to have a unique ID as introduced with the ID v_id.
Therefore, an intermediate step is necessary to transform the original beginning (ending) osm_-
id of a link to the corresponding v_id at the start (end) of the link. These links are assigned
a new ID l_id identifying links in the SciGRID dataset. The table links uses the referenced
v_id obtained from table vertices_ref_id to identify the vertices IDs.

22

Listing 9: Intermediate links table� �
1

2 CREATE TABLE _links (

3 id serial PRIMARY KEY NOT NULL,

4 osm_id_1 bigint,

5 osm_id_1_typ char,

6 osm_id_2 bigint,

7 osm_id_2_typ char,

8 length_m integer,

9 way geometry,

10 voltage integer,

11 cables integer,

12 wires text,

13 wires_nb integer,

14 frequency text,

15 from_relation bigint,

16 from_transmissions bigint[]);� �
Listing 10: Table of abstracted connections between substations� �

1 CREATE TABLE links (

2 l_id serial PRIMARY KEY NOT NULL,

3 v_id_1 bigint,

4 v_id_2 bigint,

5 voltage integer,

6 cables integer,

7 wires integer,

8 frequency text,

9 name text,

10 operator text,

11 ref text,

12 length_m integer,

13 r_ohmKm float,

14 x_ohmKm float,

15 c_nFKm float,

16 i_th_max_A float,

17 from_relation bigint,

18 WKT_SRID_4326 text);� �
3.5.2 Relations with 3 substations and a T-junction

As mentioned earlier, T-junctions are located where transmission lines branch (see Fig. 7 and
Fig. 8). In a first approximation, only relations with 3 substations and a T-junction are going
to be abstracted in this version of the SciGRID model. As for the relations with exactly 2
substations previously introduced, the abstraction of relations with three substations and a T-
junction is accomplished by using the SciGRID.py script. For simplicity, these relations are
labelled "T-junction relations" in the remainder of this user guide.

23

Figure 10: Abstraction of the relation OSM-ID:3756858: the path followed by the transmission lines
(in black) is not considered in the SciGRID abstracted model and the network link is represented by a
straight line instead (in red). Figure edited using overpass-turbo.eu, credits: ©OpenStreetMap contrib-
utors.

The abstraction of T-junction relations follows the same sub-steps introduced in Section 3.5.1,
which are: extracting the desired relations from the relation analysis results, abstracting the
vertices and links and exporting the results to the vertices and links tables.

After running the analysis script relation_analysis.py, the relations with 3 substations
are sorted out and their IDs identified. This is achieved in the python script relation_-
abstraction, (called by the SciGRID.py main script) by the function abstract_rel_with_-
T_node.

Not all relations with 3 substations contain a T-junction. In order to find T-junctions, relations
with three substations are analysed. First, a list of all nodes is selected from all relation parts
associated with transmission lines. In this nodes list, the nodes are counted. Since nodes within
one associated part of transmission line occur only once, the nodes which appear 3 times in the
list of nodes over all associated part of transmission lines belong to three different transmission
line segments. Thus, these three segments share the same node which is then identified as
T-node.

Since, relations with 3 substations and more than 3 cables can have more than one T-node,
one must also check if a connection from each of the three segments start at the T-node and
end in a different substation. This is achieved by the function abstract_3subs_T_node in
relation_abstraction. The relations for which T-nodes exist are then abstracted by using
the T-node as an "auxiliary vertex" linking the three substations present in the relation (see Fig.
11 and Fig. 12). The relations with 3 substations which have no T-junction are not included in
the present SciGRID version.

To define which transmission lines lies between the 4 abstracted vertices (3 as the substation
nodes and the T-junction node), the function separate_parts is used by the abstraction script
relation_abstraction. Then, the function insert_segments is used to insert and update
the tables vertices and links for the vertices and links obtained.

24

Figure 11: Example of power relation (OSM-ID:918569) with 3 substations and a T-junction. The
transmission lines are in black and the stations geometrical centres in orange. Figure obtained using
overpass-turbo.eu, credits: ©OpenStreetMap contributors.

Figure 12: Example of the abstraction of a T-junction relation (OSM-ID:918569) with 3 substations and
a T-junction. The transmission lines in black represent the real path and the red lines the abstracted
lines. They rely the T-node in blue, which is used as an auxiliary vertex, and the 3 substations vertices in
orange. Figure edited using overpass-turbo.eu, credits: ©OpenStreetMap contributors.

25

Vertices and links tables: The SciGRID model output

The result of executing the abstraction process described above are two new tables added to
the de_power_151109 database. First, the table vertices, defined in Listing 8, contains the
vertices of the transmission network. Second, the table links, defined in Listing 10, which
contains the links of the transmission network.

Additionally, in the links table the electrical properties of the transmission lines are calculated
by the electrical_properties.py which is called by SciGRID.py. The electrical properties
calculated are: resistance r, reactance x, capacitance c, and maximum current thermal limit Imax.
They are inserted in the links table as columns. The values of r,x,c and Imax depend on: the
voltage level, the number of wires in a transmission line, and the number of cables in a circuit.
In SciGRID, the electrical properties are calculated in per km units as follows:

rohmKm =Cr/(
wires

wirestypical
)/(

cables
3

) (1)

xohmKm =Cx/(
wires

wirestypical
)/(

cables
3

) (2)

cnFKm =Cc · (
wires

wirestypical
) · (cables

3
) (3)

Ith_max_A =CI · (
wires

wirestypical
) · (cables

3
) (4)

where, wirestypical is the number of wires in a transmission cable. wirestypical as is typically 2
for transmission lines of 220kV and 4 for transmission lines of 380kV . The coefficients used in
Eq. 1-4 are listed in table 3 from reference [17].

Voltage level Cr (ohm/km) Cx (ohm/km) Cc (nF/km) CI (A)
380 kV 0.025 0.25 0.0137 2.6
220 kV 0.080 0.32 0.0115 1.3

Table 3: Electrical properties coefficients from reference [17].

The vertices and links tables are part of a "relational database", i.e. their rows have a unique
key. Since each row in a relational database has its own unique key, rows in other tables that
are related to it can be linked to it by storing the original row’s unique key as an attribute of the
secondary row. Fig. 13 displays an example of the tables vertices and links obtained when
executing the abstraction script SciGRID.py.

26

Figure 13: Example of the SciGRID model network vertices and links tables obtained using the abstrac-
tion command.

The data obtained when running the abstraction script constitutes the output of the SciGRID
model. The vertices and links tables (only with relations containing 2 substation and T-
junction relations, for the moment) can be used and/or edited as a table or a .csvdata file. The
.csvdata files of the vertices and links are both provided in the SciGRID/data/03_network

folder.

The user can adapt the previous steps, of download, filtering and abstraction for any region. The
same apply for the open source tools used. The next step in SciGRID model development will
be to also include the rest of the relations, which contain more than three substations.

3.6 Visualization

There are different ways to visualize the SciGRID abstracted network model. When running
the SciGRID.py abstraction script, the last step of the abstraction is to create a plot of the
abstracted network. This is done by the function create_plots.py. The plot is stored as a
.png file in the folder SciGRID/data/04_visualization. An example is shown in Fig. 14.

27

Figure 14: Example of the plotted SciGRID abstracted model network using the plot function available
in SciGRID.py, status 09.11.2015. Credits: ©OpenStreetMap contributors.

Another option to visualize the resulting SciGRID abstracted model is to use the QGIS ap-
plication [18], which is a free and open-source desktop Geographic Information System (GIS)
providing data viewing, editing, and analysis capabilities for GIS enabled tables and databases
under different formats. For more information about QGIS and how to install it, refer to [18].

Visualization using QGIS

In the following, the different steps necessary to open and visualize the SciGRID csvdata files
are presented.

After installing QGIS, load/open it by typing the command ./qgis in a shell terminal. Click on
"Add Delimited Text Layer" on the menu on the left of the QGIS GUI (see Fig. 15.

28

Figure 15: "Add Delimited Text Layer" option in QGIS.

A menu appears (see Fig.16, click on the Browse button at the top right corner of the menu and
load the .csvdata file (see Fig. 17.

Figure 16: Add Delimited Text Layer menu in QGIS.

29

Figure 17: Browse the vertices csvdata file using the menu in QGIS.

Click on "OK" when the file is loaded and the data is displayed in QGIS, an example is shown
for the file vertice_de_power_151109.csvdata on Fig. 18.

Figure 18: Visualization of the SciGRID vertices in QGIS.

Further analysis of the data can be conducted using QGIS, for example nearest neighbour anal-
ysis. For more information about the available data analysis tools in QGIS refer to [18].

3.7 Running SciGRID with the makefile

The different steps necessary to build the SciGRID model, introduced in the previous sections,
can be run using the makefile. The makefile extracts the necessary information from the file
default_config.mk. In the following, the makefile and default_config.mk file are intro-
duced.

The makefile is included in the SciGRID/code folder. The advantage of using the makefile is
to automate processing steps and to enable parameter extraction from a configuration file by

30

using environment variables. Moreover, dependency/targets tracking of files is possible, which
enables tasks execution control. 2

Before running the makefile make sure that you already installed PostgreSQL and osmosis. The
user needs also to make sure that all necessary parameters have been correctly provided in the
configuration file default_config.mk. These parameters are:

1. The URL of the planet OSM data

2. The location of SciGRID data folder paths (data, network and visualization).

3. The location of the temporary storage folder for osmosis.

4. The cache value and the number of processors to be used by osm2pgsql.

5. The paths to the executable binaries of osmosis and oms2pgsql.

6. The connection parameters to the PostgreSQL database.

To run the makefile , type "make config=default_config.mk task" in a bash terminal while in the
SciGRID/code folder. The user can indicate any .mk file for the configuration option and task
takes a different value depending on which task to execute. The following tasks are available:

1. make test: will test the SciGRID model using the .pbf data for the state of Bremen
(Germany). Using the test option, the .pbf file of Bremen is downloaded from Geofabrik
[19], filtered and abstracted while assuming default PostgreSQL connection parameters
(server-cluster=9.1/main, host=127.0.0.1, user=postgres, port=5432, and no password).

2. make config=default_config.mk download: the download option will download the
OSM data from the provided URL.

3. make config=default_config.mk drop_database: will drop an existing power database
(requires a user confirmation before dropping the database).

4. make config=default_config.mk filter_OSM: is used to filter the OSM data for the
power tag using osmosis, as introduced in Section 3.3.

5. make config=default_config.mk scigrid: executes database creation, export power
data to the database, and data abstraction as introduced in Section 3.5.

6. make config=default_config.mk clean: deletes milestones (.done) located in the
folder log and .pyc (cached bytecode files produced by python) files.

7. make config=default_config.mk clean_all: deletes all files as the clean option
and additionally deletes the .log files, .csvdata, network plot (.png), as well as raw
and power data files (.pbf files).

8. make config=default_config.mk all: will execute all steps starting with download-
ing planet OSM data, filtering for power data, abstraction of data and storing network and
visualization files.

2In SciGRID release V0.1 there was a possibility to use either a bash script or a makefile. To avoid redundancy,
the bash script is no longer supported and hence not provided in release V0.2.

31

3.8 Update of the SciGRID dataset

The OSM database is continuously being updated and everyday new nodes, ways and relations
are added and/or deleted. An updated version of the planet OSM file is released every week
and made available on different mirror websites [20]. To keep the SciGRID vertices and links
databases up-to-date an update procedure is implemented. The table vertices_ref_id (see
Section 3.5, Listing 7) is the main component to update SciGRID’s links and vertices tables
when a new .pbf file is downloaded and the abstraction is executed. This procedure is intro-
duced in the following.

Consider the following scenario: A user downloads a .pbf file for the 1.1.2015 (using make

download), filters the data (using make filter_OSM) and then executes the SciGRID abstrac-
tion (using make scigrid). When the abstraction is executed, the table vertices_ref_id is
created. It contains the ID of the vertices, their type and their OSM ID. Additionally, a column
visible is present and has the value 1 for all entries. This entry means that the vertices are
abstracted. A copy of the vertices_ref_id table is stored in the folder SciGRID/data/03_-
netwok, with the database name it is derived from.

Two months later, the user obtained/downloaded a newer .pbf file and wants to abstract the
new dataset using SciGRID. This is done by running the filtering and the SciGRID abstraction
again on the new data file. However, during the abstraction, the makefile detects a copy of the
vertices_ref_id table. The makefile then sets all visible entries in this table to 0. When
the abstraction is executed (new vertices and links tables are created) the IDs of the vertices
in the new vertices table are checked by reading the table vertices_ref_id and comparing
the entries. If a vertex already existed in the previous OSM database the visible column gets
a value 1. If it is a new vertex in the OSM database, the vertex is added at the end of the
vertices_ref_id table and the visible column gets a value 1. If the vertex has been deleted
from the OSM database the vertex is still stored in the vertices_ref_id table but the visible
column gets a value of 0. If at any point later this deleted vertex is reused again, it will have the
same ID in SciGRID and the visible column gets a value of 1

In this fashion, the vertices and links datasets are updated and their IDs remain unique in their
respective tables.

4 SciGRID GUI
The SciGRID model is provided with a Graphical User Interface (GUI) written in python’s
standard GUI package: TkInter [21]. The source code of the GUI, pyGUI.py, is included in
the folder SciGRID/code. Using a GUI allows for an easy and simple interaction with the
SciRGID model and enables the user to input and adjust the different parameters of the model
and to execute all steps included in the makefile. A snapshot of the GUI is shown on Fig. 19.

32

Figure 19: A snapshot of the SciGRID GUI.

The GUI is based on the structure of the SciRGID model [9]. 3 The GUI is divided into four
sections: the Input/Output section, the Information section, the Menu and Status Bar and the
Tasks section.

In the Input/Output section the configuration parameters are set, including data folders loca-
tions, OSM data URL, database name, etc. The Information widget and the Menu and Status
Bar provide helpful information about the different fields available for settings and the progress
of the tasks in execution. In the Tasks section, the user can chose from the tasks download, filter
and SciGRID abstraction. In order to execute the tasks a click on the Button "Execute Tasks"
is followed.

4.1 Input/Output section

The Input/Output fields are situated on the left side of the GUI and they allow for the input of
the parameters necessary to run the SciGRID model by filling different entry fields (see Fig.
20).

Figure 20: Input section of the SciGRID GUI. Only the fields used for OSM Data Preprocessing are
shown.

3The requirements needed to run the SciRGID model (see Section 3.1) are necessary to use the GUI.

33

Under the subsection Data Preprocessing, the user provides the OSM raw data URL in the
field OSM_raw_data_url. The URL should include the website and name of the .pbf file
to be downloaded. Usually, .pbf files containing planet OSM data are named as follows:
planet-date.osm.pbf, where date indicates the timestamp of the planet OSM data (for exam-
ple planet-150907.osm.pbf has the timestamp 07 September 2015). The most recent .pbf
file is named planet-latest.osm.pbf instead of a date. If the OSM raw data file has already been
downloaded, the OSM_raw_data_url input field is obsolete. Then, the OSM_raw_data field
should indicate the location of the existing raw data file.

File locations can be set by typing them in the corresponding fields or by browsing the folders
using the Browse button at the left of corresponding entry fields (see Fig. 21).

Figure 21: File browsing in the SciGRID GUI to indicate a file location. The browser is called by clicking
on the "Browse" button at the left of each entry field.

The polyfile field is used to set the location and name of the .polyfile used. To set the locations
of the osmosis binary and the temporary folder used by osmosis during the filtering process,
the entries osmosis_bin and osmosis_tmp_folder are used.

In the Database Parameters subsection, the user indicates the different parameters necessary to
create the power database and to establish the data export of filtered data (see Fig. 22). This
includes among other parameters, the user name, the port number and the host address of the
PostgreSQL server.

34

Figure 22: GUI section for setting the database and PostgreSQL parameters.

The filtered power data extracted by osmosis is stored at the location indicated in the field OSM_-

power and the stylefile location is indicated in the field stylefile. To enable the PostGIS and
spatial reference system, the user need to complete the postgis and spatial_ref_sys fields.
The location of the osm2pgsql binary executable is set by osm2pgsql_bin field. To make the
data export faster, the user can specify the size of cache used in MB by varying osm2pgsql_-

cache value. Running the export in parallel is possible and the number of processors to be used
can be indicated by setting the osm2pgsql_num_processors value.

PostgreSQL parameters are also entered using the GUI, where the database name to be cre-
ated is indicated in the Postgres_database field, the user name in Postgres_user field, the
default port number in postgres_port field . The PostgreSQL server host is set in the entry
postgres_host, server name in entry postgres_cluster, while the password can be typed
in the field postgres_password as is replaced by *-symbols.

In the Output subsection, the folders to store the links and vertices .csvdata files are indicated
in network. The entry visualisation holds the location of the folder to store the network
plot (see Fig. 23).

Figure 23: Output section in the SciGRID GUI where the network .csvdata files and plot are to be
stored.

In the GUI, all entry fields are linked to a dictionary called self.input_fields, which manages
the SciGRID GUI parameters. Changes in the entry-fields are traced by a text variable, which
updates the self.input_fields dictionary.

35

4.2 Menu and status bar section

The menu bar of the GUI provides three options (see Fig. 24): the option GUI, Settings and
SciGRID, see Fig. 24.

Figure 24: SciGRID GUI menu bar including three sections: GUI, Settings, SciGRID.

Under the option GUI the user can Exit the GUI.

The option Settings can be used to open or save the configuration file used. The option Reset to
SciGRID default returns the default values for the input parameters and displays them visually
in the respective entry fields.

The third dialogue in the menu bar, SciGRID, provides a link to the SciGRID website (About
SciGRID), a link to the contact information, opens the SciGRID documentation as pdf (Docu-
mentation), and licence opens the licence file.

4.3 Information section

The information widget, located on the right side of the GUI (see Fig. 25, displays information
when the mouse cursor hovers over an entry field. Helpful messages are displayed to provide
information to the user about how to handle the specific entry.

Figure 25: SciGRID GUI information section on the left side of the figure, displayed when the mouse is
over the entry field osm_raw_data.

A text message appears in the status bar informing the user about the task being executed and
its status (done or aborted). An example is shown in Fig. 26.

36

Figure 26: SciGRID GUI status bar message (lower left corner) indicating the successful execution of
the download task.

4.4 Tasks section

In the lower right corner of the GUI three check boxes are provided: Download, Filter and
SciGRID Abstraction. When checking one of the boxes and pressing the button Execute Tasks
the respective command is executed, see Fig. 27.

Figure 27: SciGRID GUI execute section with the different tasks available.

When checking the Download box, the .pbf file indicated in the Data Preprocessing section
is downloaded and stored in the location indicated in OSM_raw_data field. A log file, down-
load.log, containing the output message of the download process is created in the
SciGRID/code/log folder.

If the file already exists, a message box appears (see Fig. 28) and the user is asked if the existing
.pbf file should be replaced. When the answer is yes, the download process starts and the .pbf
file is replaced. If the answer is no, the download process is aborted and the entry field OSM_-

raw_data is highlighted in red (see Fig. 29) to indicate the already existing file name and its
location. This checking process avoids unnecessary data download and over-writing data files
when data already exits. This can save time especially when dealing with OSM planet files
which are large files (more than 30 Gb).

37

Figure 28: Message box appearing when the planet file already exists and the download process is
executed.

Figure 29: Red highlighted entry field to indicate the already existing file location.

The Filter task executes the osmosis filtering command introduced in Section 3.3. A log
file, osmosis.log, containing the output message of the osmosis command is created in the

38

SciGRID/code/log folder. If the filtered power data file already exists, a message box appears
and the user can either keep the file or execute the filtering command again. When keeping the
existing power data file the process of filtering is aborted.

When choosing two or more tasks to execute, a prompt asks if the user wants to replace the
corresponding file (if already exists). For example, if the tasks Filter and SciGRID Abstraction
are both selected and a filtering is already found, a message box appears and the user can choose
to either keep the already filtered data or to abort the execution of the tasks.

The above cited two examples are an example of the dependency tracking option implemented
in the SciGRID GUI. For a list of all dependencies tracking see the following chart:

39

Execution Task(s)

Download URL OSM Data Replace Abort
Process.

Abort
Process.

Download

planet-151109.osm.pbf

Filter OSM Data
Power
Data

Replace Abort
Process.

Abort
Process.

Filter OSM Data

de_power_151109.osm.pbf

Abstraction
Power
Data Database Add Data

Abort
Process.

Abort
Process.

Perform
SciGRID

Abstraction

vertices_de_power_151109.csvdata

links_de_power_151109.csvdata

topology_de_power_151109.png
Status: All Done :)

yes

no

ok

not exist

exist

not exist

no

yes

yes

no

exist

not exist

exist

not exist

no

yes

yes

no

exist

not exist

exist

not exist

no

yes

40

The task SciGRID abstraction export of power data into the database and executes the abstrac-
tion of the power data introduced in Section 3.5. The log files osm2pgsql.log and abstraction.log
are created in the SciGRID/code/log folder. Additionally, two files database_import.done and
abstraction.done are created when the database import and abstraction steps are successfully ex-
ecuted. The .log and .done files serve a debugging purpose and help identifying errors when
executing task(s).

5 Acknowledgements
The authors and developers of SciGRID acknowledge the funding by the German Federal Min-
istry of Education and Research (BMBF) through the funding initiative "Zukunftsfähige Strom-
netze" (funding code 03SF0471). Furthermore, the authors would like to thank the users of
SciGRID for their constructive feedback. Special thanks to Jonas Hörsch for the fixes he sent,
which were included in this release v0.2.

6 Troubleshooting
• Avoid naming databases or data files using the ’-’ symbol. This will create an error when

using psql and osm2pgsql.

• Avoid using capital letters to name databases or data files. This will create an error when
using psql and osm2pgsql.

• If you are using pgAdmin III while running the SciGRID model, an error may occur
when the databases are selected in pgAdmin III. You need to close pgAdmin III while
running the SciGRID model.

• When executing the SciGRID model on Mac, the paths to postgis.sql and spatial_-

ref_sys.sql (both in the Contrib folder of PostgreSQL folder) may be different that
the one on a Linux machine. The PostgreSQL folder on Mac is usually in the /Library

folder.

• To localize the files potgis.sql and spatial_ref_sys.sql type the following com-
mands in a terminal:� �
find . -name 'postgis.sql'� �
� �
find . -name 'spatial_ref_sys.sql'� �

41

7 How to?

7.1 How to install osmosis?

7.1.1 On Linux

The installation of osmosis in the latest version is done in three steps.
Open a shell script, and type the following command to download the osmosis build-in package
for Linux:

� �
$ wget http://bretth.dev.openstreetmap.org/osmosis-build/osmosis-latest.tgz� �
Then, unpack the downloaded osmosis build-in package by typing:� �
$ tar xvfz osmosis-latest.tgz� �
Finally, to be able to use osmosis, change the rights of the osmosis binary file by typing:� �
$ chmod a+x bin/osmosis� �
7.1.2 On Mac OS

The easiest way to install osmosis on a Mac is to use homebrew [22]. In a shell terminal type:� �
$ brew install osmosis� �
7.2 How to install PostgreSQL?

7.2.1 On Linux

To install the built-in PostgreSQL and PostGIS for Linux, type the following command in a
shell terminal:� �
$ sudo apt-get install postgresql-9.1 postgis� �
7.2.2 On Mac OS

To install PostgreSQL on Mac, a graphical installer is available, which includes PostgreSQL,
and the StackBuilder utility for installation of additional packages. For PostgreSQL 9.0 and
9.1, Mac OS X 10.5 and above are supported, on 32 and 64-bit Intel CPUs, and PostgreSQL 9.2
and later support Mac OS X 10.6 and above on 32 and 64-bit Intel CPUs. The installer can be

42

downloaded from the webpage [23].

There is also a possibility to install PostgreSQL by downloading the Postgres.app, which is a
simple, native Mac OS X app that runs in the menu bar without the need of an installer. After
downloading the Postgres.app [24], open it, and a PostgreSQL server is then ready and awaiting
new connections. To shut the server down, you just need to close the app.

7.3 How to install osm2pgsql?

A detailed webpage [25] on the OpenStreetMap wiki page exists where it is explained how to
install osm2pgsql on Linux and Mac OS systems.

7.4 How to obtain gpx files?

Here we explain how to obtain a gpx file representing the landmass (or borders) of a country.

• Look up the country in the webpage [26] and extract the relation number representing the
country’s landmass. For example, the relation ID=62781 represent the German landmass.

• Use overpass-turbo.eu to visualize the relation, using the command:� �
[out:json];

(rel(62781));

out ;

>;

out ;� �
• Use overpass-turbo.eu "Export" button in the menu bar and export the resulting relation

data as a gpx file.

• The resulting .gpx files contain a very large number of points, for example the .gpx file of
Germany contains 212089 points. Therefore, the .gpx file is simplified by deleting some
points but still keeping enough points to obtain a sharp landmass representation. This is
done by the python script simplify_landmass.py provided in the SciGRID/data/04_-
visualization folder. For example, the output of the script simplify_landmass.py
for the de_landmass.gpx file is the de_landmass.txt file which then is used by the
SciGRID/code/create_plots.py script to plot the landmass border of Germany.

References
[1] Open Data Commons Open Database License. Odbl. http://opendatacommons.org/

licenses/odbl/.

[2] OpenStreetMap. Copyright and license. http://www.openstreetmap.org/copyright.

[3] Open Database License. (odbl) v1.0. http://opendatacommons.org/licenses/odbl/
1.0/.

43

[4] Database Contents License. (dbcl) v1.0. http://opendatacommons.org/licenses/

dbcl/1.0/.

[5] Open Data Commons Open Database License. (odbl). http://opendatacommons.org/
licenses/odbl/#sthash.C4HJvcBW.dpuf.

[6] Apache License. Version 2. http://www.apache.org/licenses/LICENSE-2.0.

[7] Research Center Next Energy. EWE-Forschungszentrum fur Energietechnologie e. V.
http://www.next-energy.de.

[8] OpenStreetMap. http://www.openstreetmap.org.

[9] SciGRID webpage. Scigrid developers. http://www.scigrid.de.

[10] Ito world website. http://www.itoworld.com.

[11] Index of mirrors openstreetmap.org. openstreetmap.org planet data. http://ftp.

heanet.ie/mirrors/openstreetmap.org.

[12] openstreetmap.org planet data. http://wiki.openstreetmap.org/wiki/Planet.osm.

[13] OpenStreetMap. project wiki webpage. http://wiki.openstreetmap.org.

[14] Osmosis. Detailed information about osmosis. http://wiki.openstreetmap.org/

wiki/Osmosis#Detailed_usage.

[15] Databases and data access APIs. openstreetmap wiki webpage. http://www.

postgresql.org.

[16] Postgis, a spatial database extender for postgresql. http://postgis.net/.

[17] Deutsche Energy-Agentur (dena). Ausbau- und Innovationsbedarf der Stromverteilnetze
in Deutschland bis 2030. Technical report, 2012.

[18] QGIS. A free and open source geographic information system. http://www2.qgis.org.

[19] Geofabrik Downloads. Openstreetmap data extracts. http://download.geofabrik.de.

[20] Planet.OSM. http://wiki.openstreetmap.org/wiki/Planet.osm.

[21] OpenStreetMap. Countries of europe landmass relations. http://wiki.

openstreetmap.org/wiki/Template:Countries_of_Europe.

[22] HomeBrew. http://brew.sh/.

[23] EnterpriseDB. Download postgresql. http://www.enterprisedb.com/

products-services-training/pgdownload#osx.

[24] Postgres.app. Download postgres.app. http://postgresapp.com/.

[25] OpenStreetMap Wiki Page. Install osm2pgsql. http://wiki.openstreetmap.org/

wiki/Osm2pgsql#Installation.

[26] Python GUI package. Tkinter. https://wiki.python.org/moin/TkInter.

44

